The AFIT of Today is the Air Force of Tomorrow.

Manufacturing
Flow Management
Supply Chain Management Processes

Information Flow

Tier 2 Supplier Tier 1 Supplier Manufacturer Customer Consumer/End user

Supply Chain Management Processes

Product Flow

Purchasing Logistics Marketing

Production R&D Finance

Customer Relationship Management

Supplier Relationship Management

Customer Service Management

Demand Management

Order Fulfillment

Manufacturing Flow Management

Product Development and Commercialization

Returns Management

Manufacturing Flow Management

• Manufacturing Flow Management – includes all activities necessary to obtain, implement, and manage manufacturing flexibility and to pull the products through the plants.

• Manufacturing flexibility is the ability to manage manufacturing resources and uncertainty to meet various customer requests at the lowest possible cost.
Manufacturing Flow Management

Strategic Sub-Processes

- Review Manufacturing, Sourcing, Marketing, and Logistics Strategies
- Determine Degree of Manufacturing Flexibility Requirement
- Determine Push/Pull Boundaries
- Identify Manufacturing Constraints and Determine Capabilities
- Develop Framework of Metrics

Process Interfaces

- Customer Relationship Management
- Supplier Relationship Management
- Customer Service Management
- Demand Management
- Order Fulfillment
- Product Development & Commercialization
- Returns Management

Operational Sub-processes

- Determine Routing and Velocity through Manufacturing
- Manufacturing & Material Planning
- Execute Capacity and Demand Plans
- Measure Performance

Forces for Change

The AFIT of Today is the Air Force of Tomorrow.

- Globalization
- Technology
- Shifts in channel power
- Growth in outsourcing
- New mentality
 - From: “We sell what we make”
 - To: “We make what we sell”
- Supply chain management
Influences on Manufacturing Flexibility

- Product characteristics
 - Differentiation vs. standardization
 - Product complexity
 - Profit margins

- Customer Demand characteristics
 - Demand volumes and fluctuation
 - Tolerance for out-of-stocks
 - Tolerance for waiting

- Lead time
 - Manufacturing process time
 - Suppliers’ lead times
 - Customer delivery lead time
Strategic Manufacturing Flow Management Process

The AFIT of Today is the Air Force of Tomorrow.

<table>
<thead>
<tr>
<th>Process Interfaces</th>
<th>Strategic Sub-Processes</th>
<th>Activities</th>
</tr>
</thead>
</table>
| Customer Relationship Management | Review Manufacturing, Sourcing, Marketing, and Logistics Strategies | - Establish preparedness for future market changes
- Forecast expertise needed
- Forecast/study laws and regulations |
| Supplier Relationship Management | Determine Degree of Manufacturing Flexibility Requirement | - Determine customer tolerance time
- Establish quality policy and controls
- Define minimum batch size and cycle time
- Plan capacity growth
- Establish make vs. buy decisions |
| Customer Service Management | Determine Push/Pull Boundaries | - Review customer service goals
- Determine inventory/stocking points
- Evaluate postponement opportunities |
| Demand Management | Identify Manufacturing Constraints and Determine Capabilities | - Document capabilities
- Determine stock quantities and location
- Develop disposal/disposition requirements
- Develop contingency plans
- Develop supplier development strategy
- Develop acceptance criteria
- Develop communications mechanisms
 - to other processes supporting requirements
 - to “order acceptance” guidelines |
| Order Fulfillment | Develop Framework of Metrics | - Develop measurement framework
- Establish communication and feedback loops |
| Product Development & Commercialization | | |
| Returns Management | | |

Strategic Sub-Process #1

Review Manufacturing, Sourcing, Marketing, and Logistics Strategies

- Assess strategic fit
- Competitive priorities
- SWOT analysis
 - Threats and opportunities?
Generic Manufacturing Strategies

The AFIT of Today is the Air Force of Tomorrow.

Air University: The Intellectual and Leadership Center of the Air Force

Aim High…Fly - Fight - Win

Lean Manufacturing

The AFIT of Today is the Air Force of Tomorrow.

- Characteristics:
 - Focus on perfect, first-time quality (zero defects)
 - Waste minimization
 - Overproduction
 - Waiting
 - Unnecessary transport
 - Overprocessing of parts
 - Inventories
 - Unnecessary movement by employees
 - Defective parts
 - Focus on continuous improvement, minimizing variability
 - Typically relies on short production plans

- Best applied to: Standardized, price-sensitive products with stable demand and long life cycles
Agile Manufacturing

The AFIT of Today is the Air Force of Tomorrow.

Characteristics:
- Flexible demand accommodation
 - Flexible manufacturing
 - Flexible workforce
 - Arbitrary lot sizing
- Reconfigurable operating architecture
- Integrated product design and manufacture
- Short supply chains
- Intense information sharing
- Postponement

Best applied to: Non-standardized or customized, high-margin products with volatile demand and short life cycles
Lean vs. Agile: Similarities and Differences

Both approaches have the same objective:
Meeting customer demands at the least total cost

- Lean tends to focus on process – precise, efficient execution; internal perspective
- Agile tends to focus on products – precise, effective accommodation; external perspective
Strategic Sub-Process #2

Determine Degree of Manufacturing Flexibility Required

- Determine customer tolerance time.
- Establish quality policy and controls.
- Define minimum batch size/cycle time.
- Plan capacity growth.
- Establish make vs. buy decisions.

Drivers

Approaches
Organizational Flexibility

The AFIT of Today is the Air Force of Tomorrow.

Type of Flexibility

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Flexibility</td>
</tr>
<tr>
<td>Manufacturing Operations</td>
</tr>
<tr>
<td>The ability of the organization to manage production resources and uncertainty to meet various customer requirements.</td>
</tr>
<tr>
<td>Market</td>
</tr>
<tr>
<td>The ability to mass-customize and build close relationships with customers, including designing new products and modifying existing ones.</td>
</tr>
<tr>
<td>Supply</td>
</tr>
<tr>
<td>The ability to reconfigure the supply chain (geographically) as sources of supply and customers change.</td>
</tr>
<tr>
<td>Information Systems</td>
</tr>
<tr>
<td>The ability to align information systems with changing customer demands.</td>
</tr>
</tbody>
</table>
Production Flexibility

The AFIT of Today is the Air Force of Tomorrow.

<table>
<thead>
<tr>
<th>Type of Flexibility</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix</td>
<td>The ability to change over to a different product quickly and economically without changes in capacity</td>
</tr>
<tr>
<td>Volume</td>
<td>The ability to operate at various batch sizes and/or at different production volumes economically and effectively</td>
</tr>
<tr>
<td>Expansion</td>
<td>Modular building and expanding capacity</td>
</tr>
<tr>
<td>Material Handling</td>
<td>The ability to effectively transport different work pieces between various processing centers over multiple paths</td>
</tr>
<tr>
<td>Process (routing)</td>
<td>The ability to process a given set of part types using multiple routes effectively</td>
</tr>
<tr>
<td>Machine</td>
<td>The ability of a machine to perform different operations economically and effectively</td>
</tr>
<tr>
<td>Work-center (labor)</td>
<td>The ability of the workforce to perform a broad range of tasks economically and effectively</td>
</tr>
</tbody>
</table>

Outsourced Manufacturing

The AFIT of Today is the Air Force of Tomorrow.

• Motives
 • Focus on core competence (R&D, NPD, merchandising)
 • Support rapid expansion
 • Shed the assets

• Potential benefits
 • Improved focus on highest priorities
 • Fixed costs become semi-fixed and variable

• Potential costs
 • Loss of control: product quality and service
 • Higher total costs despite low-cost production
Strategic Sub-Process #3

Determine Push/Pull Boundaries

• Review customer service goals.
• Determine inventory/stocking points.
• Evaluate postponement opportunities.

Push Point Pull

MTS MTO
Disconnects in Supply and Demand

The AFIT of Today is the Air Force of Tomorrow.

Exhibit A

Exhibit B
Strategic Sub-Process #4

Identify Manufacturing Constraints and Determine Capabilities

- Document manufacturing capabilities/constraints.
- Determine inventory policy (quantities and locations).
- Support returns management activity.
- Develop supplier development strategy.
- Develop acceptance criteria.
- Develop communication mechanisms
 - to other processes supporting requirements.
 - to “order acceptance” guidelines.
Strategic Sub-Process #5

Develop Framework of Metrics

• Develop measurement framework.

• Establish communication and feedback loop.
How MFM Affects EVA®

The AFIT of Today is the Air Force of Tomorrow.

- Obtain repeat business
- Increase product availability
- Provide desired product features
- Reduce direct labor and materials
- Improve manufacturing processes
- Increase plant productivity
- Reduce waste and rework
- Increase labor utilization
- Increase order fill and orders shipped complete
- Reduce order cycle time
- Reduce expedited shipments
- Reduce damage and handling
- Reduce packaging
- Reduce human resources costs/improve effectiveness
- Reduce general overhead / mgmt. / admin. costs
- Reduce component, WIP & finished goods inventory
- Reduce obsolete inventory
- Buy to order, make to order, or JIT
- Reduce accounts receivable through faster payment
- Improve asset utilization and rationalization
- Improve investment planning and deployment

ECONOMIC VALUE ADDED

\[
\text{ECONOMIC VALUE ADDED} = \frac{\text{NET PROFIT MARGIN}}{\text{NET SALES}} - \text{CAPITAL CHARGE}
\]

\[
\text{CAPITAL CHARGE} = \frac{\text{COST OF CAPITAL}}{\text{TOTAL ASSETS}} \times \text{TOTAL ASSETS}
\]

\[
\text{COST OF CAPITAL} = \text{COST OF CAPITAL} \times \text{TOTAL ASSETS}
\]

\[
\text{NET PROFIT MARGIN} = \frac{\text{SALES} - \text{CGS}}{\text{TOTAL EXPENSES}}
\]

\[
\text{GROSS MARGIN} = \frac{\text{SALES} - \text{CGS}}{\text{TOTAL EXPENSES}}
\]

\[
\text{NET PROFIT} = \frac{\text{GROSS MARGIN}}{\text{NET SALES}} - \text{CAPITAL CHARGE}
\]

\[
\text{TOTAL EXPENSES} = \text{CURRENT ASSETS} + \text{FIXED ASSETS} + \text{OTHER CURRENT ASSETS}
\]

\[
\text{INVENTORY} = \text{CURRENT ASSETS} + \text{FIXED ASSETS} + \text{OTHER CURRENT ASSETS}
\]
Common Production Measures

The AFIT of Today is the Air Force of Tomorrow.

- **Efficiency**
 - Plant productivity
 - Labor productivity
 - Machine productivity

- **Cycle Time**
 - On-time availability
 - Cycle time variance
 - Cycle time competitiveness

- **Safety**
 - Employee safety
 - Customer safety
 - Environmental record

- **Quality**
 - Complete order fill
 - Defects
 - Scrap rate/variance
 - Desired features

- **Cost**
 - Production costs
 - Direct materials
 - Direct labor
 - Overhead
 - Setup costs
 - Inventory costs
Operational Process

The AFIT of Today is the Air Force of Tomorrow.

Operational Sub-Processes:

- Determine Routing and Velocity through Manufacturing
- Manufacturing & Material Planning
- Execute Capacity and Demand Plans
- Measure Performance

Activities:

- Translate Demand Management output into resource and production planning
- Review aggregate production plan
- Integrate capacity of managed manufacturing facilities
- Develop master production schedule (MPS)

- Generate:
 - Detailed capacity planning
 - Time-phased requirements (MRP)

- Manage inventories
 - Raw materials, subcomponents, and packaging
 - Work in process
 - Finished goods

- Control production activity (shop floor management)

- Examine and report quality levels of manufactured product
- Identify root causes of quality issues
- Measure process performance
Operational Sub-Process #1

Determine Routing and Velocity through Manufacturing

- Translate demand management output into resource and production planning.
- Review aggregate production plan.
- Integrate capacity of managed manufacturing facilities.
- Develop master production schedule (MPS).
MFG Resource Planning

The AFIT of Today is the Air Force of Tomorrow.

Customer Orders

Forecasts

Demand Mgt

FG Inventory?

Master Production Schedule

ATP to CRM

Material Requirements Planning

Inventory Records

End Items (Independent Demand)

Components (Dependent Demand)
Operational Sub-Process #2

Manufacturing and Material Planning

• Generate:
 - Detailed capacity planning.
 - Time-phased requirements (MRP).
Operational Sub-Process #3

Execute Capacity and Demand Plans

• Manage inventories:
 • Raw materials, subcomponents, and packaging.
 • Work in process.
 • Finished goods.

• Control production activity (shop floor management).
Operational Sub-Process #4

The AFIT of Today is the Air Force of Tomorrow.

Measure Performance

• Examine and report quality levels of manufactured product.

• Identify root causes of quality issues.

• Measure process performance.

Conclusions

The AFIT of Today is the Air Force of Tomorrow.

• Manufacturing flow management involves more than the production function and final assembly.

• Manufacturing flow management acts in support of overall strategy, supply chain strategy, and customer service objectives.

• Determining and implementing the “right” degree of manufacturing flexibility is key.

• Measurement must focus on contribution to overall success.